Math 323 - Formal Mathematical Reasoning and Writing
 Problem Session
 Wednesday, 3/4/15

1. Each of the following items asks you to give either a definition or a statement of a theorem. Please give mathematically precise statements.
(a) State the Archimedean Principle.
(b) Let S be a subset of the real numbers. State what it means for a number a to be the greatest lower bound of S.
(c) State the Triangle Inequality.
2. Let $A=\{x \in \mathbb{Q}: x<10\}$. Decide whether the following statements are true or false. Briefly explain your answers.
(a) If y is not an upper bound of S, then y is in S.
(b) If y is not an upper bound of S, then y is not in S.
(c) For every $y \in S$, there exists some $z \in S$ such that $z>y$.
3. Consider the set $C=\left\{\frac{n}{2 n+1}: n \in \mathbb{N}\right\}$. Determine, with proof, the least upper bound and greatest lower bound of S.

If you're finished, try this bonus problem!
Prove that if $a, b, c \in \mathbb{Q}$ and $a<b$, then $a+c<b+c$.
This is one of the properties of an ordered field. Here, you are trying to prove this property specifically for the field \mathbb{Q}. Instead of invoking the fact that \mathbb{Q} is an ordered field, try to prove this using only the definitions of operations on \mathbb{Q}.
When you go home, do the following:

- Step 1 Look through your class notes and your homework, and make a list of all the properties of \mathbb{Q} that you proved. For instance:
- Addition is commutative, multiplication is associative, every $x \in \mathbb{Q}$ has an additive inverse, etc...
- Step 2 Now, compare this list to the list of properties in section 4.3.2 of your textbook (pp. 60-63). Make a list of all the properties you have not yet proved in class or on the homework. For instance:
- Addition is associative, multiplication is commutative, every $x \in \mathbb{Q}$ has a multiplicative inverse, etc...
- Step 3 Prove all the properties you listed in Step 2.

$\mathrm{HT}_{\mathrm{E}} \mathrm{X}$ tip of the week!

Are you using $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ on Windows and that file I sent you still isn't compiling to give you a pdf? There is a setup.exe file that you needed to run. Perhaps your forgot to do that?

Sometimes you want big versions of (), $\}$. To do this, use \left and \right. For instance:
$\backslash[\backslash\{$ fracin : n \in $\backslash \operatorname{mathbb}\{\mathrm{N}\}$
$} \backslash]$
$\backslash[(\backslash f r a c 12)(\backslash f r a c 1 n) \backslash]$

$$
\begin{gathered}
\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \\
\left(\frac{1}{2}\right)\left(\frac{1}{n}\right)
\end{gathered}
$$

VS

$$
\left\\{ \frac1n : n \in \mathbb\{N\} \right } \backslash \} \text {
$$ }

$\backslash[\backslash l e f t(\backslash f r a c 12 \backslash r i g h t) \backslash l e f t(\backslash f r a c 1 n ~ \backslash r i g h t) ~ \]$

$$
\begin{gathered}
\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \\
\left(\frac{1}{2}\right)\left(\frac{1}{n}\right)
\end{gathered}
$$

